Problem Set I: Due Tuesday, January 22, 2013 Should be completed by January 17, 2013

1.) Calculate Q, the rate of collisionless power dissipation, for the electrostatic electron plasma (Langmuir) wave with $\omega = \omega(k)$. You may assume 1D, and a Maxwellian $\langle f \rangle$. Calculate $\omega(k)$ explicitly.

Note: Recall $Q = \omega(k) \in_{IM} \frac{|E_k|^2}{8\pi}$, where $\in_{IM} = \in_{IM} (k, \omega(k))$.

- 2.) Consider a current-driven system in 1D. Electrons are Maxwellian, with centroid at u_0 , temperature T_e . Ions have temperature T_i . Assume the system is collisionless.
- (a.) Derive an expression for the mean electric field required to maintain the electron mean velocity u_0 . Your answer should depend on \tilde{E} and \tilde{f} .
- (b.) Calculate the general condition for stability of this system. Do not assume $k^2 \lambda_D^2 \ll 1$. Be as explicit as possible. (You can ignore the external field here.)
- (c.) Assuming a spectrum of unstable CDIA waves, derive an expression for the mean electric field required to maintain a stationary state. You should leave your answer as a function of u_0 and the wave spectrum.
- (d.) Prove that total resonant particle energy and total wave energy are conserved here, at the level of quasi-linear theory. N.B. You must consider both resonant electrons and resonant ions.

- 3.) Consider a 1D system of a cold beam, with density n_0 and velocity V_0 interacting with a cold plasma of density n_0 .
- (a.) Calculate the wave energy of modes of the beam only. Explain your results.
- (b.) Calculate the condition for instability, assuming $n_b = n_0$. Explain the physics of your result. Hint: Choose your frame carefully!
- (c.) Now take $n_b \ll n_0$. Estimate when instability occurs. Explain the physics of your result.

4.) *Electron MHD* (EMHD)

This extended problem introduces you to EMHD and challenges you to apply what you've learned about MHD to understand the structures of a different system of fluid equations. In EMHD, the ions are stationary and the "fluid" is a fluid of electrons. EMHD is useful in problems involving fast Z-pinches, filamentation and magnetic field generation in laser plasmas, Fast Igniter, etc.

The basic equations of EMHD are the electron momentum balance equation

- (1) $\frac{\partial}{\partial t}\underline{\mathbf{v}} + \underline{\mathbf{v}} \cdot \underline{\nabla}\underline{\mathbf{v}} = -\frac{q}{m}\underline{E} \frac{\nabla P}{\rho} \frac{q}{mc}(\underline{\mathbf{v}} \times \underline{B}) v\underline{\mathbf{v}},$
- (2) $\underline{J} = -nq\underline{v}$,

and continuity

(3) $\underline{\nabla} \cdot \underline{J} = 0$.

Note that here, Ampere's law forces incompressibility of the mass flow $\rho \underline{v}$. Here \underline{v} is the electron fluid velocity, v is the electron-ion collision frequency, $q = |e|, m = m_e$. Of course, Maxwell's equations apply, but the displacement current is neglected.

i.) Freezing-in

Determine the freezing-in law for EMHD by taking the curl of Eqn. (1) and using the identity

$$\underline{\mathbf{v}} \cdot \underline{\nabla} \underline{\mathbf{v}} = \underline{\mathbf{v}} \times \underline{\boldsymbol{\omega}} - \underline{\nabla} \left(\mathbf{v}^2 / 2 \right).$$

Assume the electrons have $p = p(\rho)$. Approach this problem by trying to derive an equation for "something" which has the structure of the induction equation in MHD. Discuss the physics - what is the "something" and what is it frozen into? In retrospect, why is the frozen-in quantity obvious? How is freezing-in broken?

ii.) Large Scale Limit

Show that for $\ell^2 \gg c^2 / \omega_{pe}^2$, the dynamical equations for EMHD reduce to

$$\frac{\partial B}{\partial t} + \underline{\nabla} \times \left(\frac{\underline{J}}{nq} \times \underline{B}\right) = -\nu \underline{\nabla} \times \left(\frac{\underline{J}}{nq}\right)$$

$$\underline{\nabla} \cdot \underline{J} = 0; \quad \underline{\nabla} \cdot \underline{B} = 0.$$

- a.) Show that density remains constant here.
- b.) Formulate an energy theorem for EMHD in this limit, by considering the energy content of a "blob" of EMHD fluid.
- c.) Discuss the frozen-in law in this limit.
- 5.) Kulsrud, Chapter 3, #1
- 6.) Kulsrud, Chapter 3, #3
- 7.) Kulsrud, Chapter 3, #4
- 8.) Kulsrud, Chapter 4, #1, paragraph 1
- 9.) Kulsrud, Chapter 4, #2
- 10.) Kulsrud, Chapter 4, #4